

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-143401

Large-Scale Cobra-
Distributed Software
Framework for NIF
Controls

R. W. Carey, K. W. Fong, R. J. Sanchez, J. D. Tappero, J.
P. Woodruff

This article was submitted to
8th International Conference on Accelerator and Large Experimental
Physics Control Systems, San Jose, CA, November 27-30, 2001

October 16, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

THAI001

LARGE-SCALE CORBA-DISTRIBUTED SOFTWARE FRAMEWORK
FOR NIF CONTROLS

Robert W. Carey, Kirby W. Fong, Randy J. Sanchez, Joseph D. Tappero, John P. Woodruff
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract
The Integrated Computer Control System (ICCS) is

based on a scalable software framework that is
distributed over some 325 computers throughout the
NIF facility. The framework provides templates and
services at multiple levels of abstraction for the
construction of software applications that communicate
via CORBA (Common Object Request Broker
Architecture). Various forms of object-oriented software
design patterns are implemented as templates to be
extended by application software. Developers extend the
framework base classes to model the numerous physical
control points, thereby sharing the functionality defined
by the base classes. About 56,000 software objects
each individually addressed through CORBA are to be
created in the complete ICCS. Most objects have a
persistent state that is initialized at system start-up and
stored in a database. Additional framework services are
provided by centralized server programs that implement
events, alerts, reservations, message logging,
database/file persistence, name services, and process
management. The ICCS software framework approach
allows for efficient construction of a software system
that supports a large number of distributed control
points representing a complex control application.

1 INTRODUCTION
The ICCS is a distributed, hierarchically organized,

object-oriented control system that employs a
framework of reusable software to build uniform
programs to satisfy numerous functional requirements.
ICCS employs Ada, CORBA, and object-oriented
techniques to enhance the openness of the architecture
and portability of the software. Java is used for the
production of graphical user interfaces and the
integration of commercial software, particularly the
Oracle database system.

NIF is a largely repeating structure of 192 laser
beams, each having almost identical sets of
components. The application software elements are
representations of that laser hardware devised to map
NIF physical control components to CORBA software
objects [1][2][3].

Following strategies of object-oriented software
development, similar software components are defined
as classes, and these classes are instantiated for each
occurrence of a NIF component in each laser beam. The

framework and application software combined have
resulted in a design consisting of approximately 300
interface classes.

Each software component derives from a particular
component class and has an identity (name) within the
facility. Each software component object is allocated to
the processor that is connected to its physical
representation. CORBA maps the name to the software
component object located in the processor that is
connected to the physical hardware. This gives location
transparency to the ICCS application software.

2 LAYERED ARCHITECTURE
The ICCS layered architecture [4] was devised to

address the general problem of providing distributed
control for large scientific facilities that do not require
real-time capability within the supervisory software.
The resultant architecture consists of front-end
processors (FEPs) coordinated by a supervisory system
and exploits commercially available components where
possible.

Functions that operate hardware control points are
implemented on FEPs. There are 18 different types of
FEP computers – some 300 computers in all – that
differ by the hardware devices that they control. The
control points themselves are sensors and actuators
attached to interface boards plugged into an FEP
backplane. In many cases, control points are handled by
intelligent components that incorporate embedded
controllers operated by small fixed programs. This
firmware running in the embedded controller does much
of the low-level work that would otherwise be allocated
to an FEP.

The supervisor layer is partitioned into ten cohesive
subsystems [5], each of which controls a primary NIF
subsystem such as beam control or power conditioning.
These supervisory controls, which are hosted on UNIX
workstations housed in control consoles, provide
centralized operator controls and status, data archiving,
and integration services.

Some real-time control is inevitably necessary.
Functions requiring real-time implementation are
allocated to software within a single FEP or to an
embedded controller, so communication over the local
area network is not obligated to meet hard-deadline
schedules.

3 SOFTWARE FRAMEWORKS
The ICCS software framework is the collection of

collaborating abstractions that are used to construct the
application software. This framework delivers prebuilt
components that are extended to accommodate specific
additional requirements in the construction of the
application software. Engineers specialize the
framework for each subsystem [6] to handle different
kinds of control points, controllers, user interfaces, and
functionality. The framework concept enables the
cost-effective construction of the NIF software and
provides the basis for long-term maintainability and
upgrades. The following discussion introduces the
framework components that form the basis of the ICCS
software.

System Manager – provides services for the
integrated management of the ICCS network of
hundreds of computers, ensures that the necessary
processes and computers are operating, and provides
failover services for processes that terminate during
operation.

Graphical User Interface (GUI) – enables
human interaction with the ICCS via graphical user
interfaces displayed upon control room consoles or on
X Terminals distributed throughout the facility. The
GUI is implemented as a framework to ensure
consistency across the applications. Commercial Java-
based GUI development tools are used to construct the
display graphics.

Message Log – provides audit trace services for all
subsystems. A central server collects messages and
associated attributes and writes them to appropriate
persistent stores. Interested observers use Database
Management System retrieval techniques to update
operators’ consoles or to produce historic audit trails of
operations.

Configuration – defines the naming convention
and manages the static data for the hardware control
points that are accessible to the ICCS. Configuration
provides a taxonomic system that is used as the key by
which clients locate software control components on
the CORBA bus. Coupled with the use of the Factory
pattern, the framework application allows processes to
postpone until runtime the particular arrangement of
equipment that is allocated to individual computers on
the network.

Application – defines templates for aggregation,
iteration, and control of collections of control
components. A publish/subscribe mechanism that
implements the Observer pattern provides a means for
the GUI layer to interact with the control layers. This
framework is the basis for messages that transmit

status updates between the Ada and Java languages
using data-type independent containers.

Reservation – manages access to control points by
giving a single client exclusive rights to control or
otherwise alter the control point. The framework uses a
lock-and-key model. Reserved control points that are
“locked” can only be manipulated if and when a client
presents the “key.”

Status Monitor – provides generalized services for
disseminating control point status information using
the push model of change notification. The status
monitor operates within the FEP, observing control
points and notifying other parts of the system when the
status changes by a significant amount. Network
messages are only generated when changes of interest
occur.

Alert System – any application encountering a
situation that requires immediate attention raises an
alert, which then requires interaction with an operator
to proceed. The alert system records its transactions so
that the data can be analyzed after the fact.

Machine History – gathers information about
equipment performance during operation of the NIF for
analysis to improve efficiency and reliability. Examples
of such information are component installation and
service records, operating service time or usage count,
abnormal conditions, and periodic readings of sensors.

Sequence Control Language – used to create
custom scripting languages for the NIF applications.
The service automates sequences of commands executed
on the distributed control points or other software
artifacts. The implementation is based on Extended
Markup Language (XML) data language technology and
has been used to provide operator-selectable image
processing algorithms in an automated beam alignment
application.

Shot Life Cycle – defines a finite state machine
relating the nine intermediate states in preparing for,
firing, and analyzing a NIF shot. The framework
provides coordination, and the several functional
subsystems define the details of work to be done at each
of the stages of shot execution.

Shot Archive – provides the repository services
for data retrieved from the various instruments and
sensors that diagnose performance of the laser and target
interactions.

4 LEVELS OF ABSTRACTION
In a large system, coupling between software

components can be managed by dividing the system
into subsystems that are organized by levels of
abstraction, and then enforcing rules for dependencies
between subsystems.

The discipline of layers of abstraction prescribes that
every component within an upper-level subsystem may
depend only on components that are allocated to a
specified set of lower-level subsystems. The upper
subsystem is said to “import” the lower subsystem.
Cycles in the graph of imports are forbidden, but
within a subsystem, packages may mutually depend on
each other.

There are two benefits to organizing components
into leveled subsystems. The effect of changes to an
interface is limited to the components contained in
subsystems that import the changed component. In
addition, developers working on low-level packages can
enhance and test their product and release stable
subsystems for upper-level work, according to a
managed schedule without inconveniencing application
developers who import prior versions [7].

In object-oriented programming, abstractions are
extended by deriving new types, and those derivations
may cross subsystem boundaries. Levels of abstraction
have caused ICCS packages to be allocated into
subsystems at three levels called Framework
Templates, NIF Building Blocks, and Application
Behaviors. The subsystems in these three levels provide
a low level of reusable templates, an intermediate level
of concrete components, and an upper level that
instantiates the templates into services that act on the
components. All the subsystems adhere strictly to the
principle limiting imports to lower levels.

Subsystems in the Framework Templates level
provide abstractions that arise from a domain analysis
of control systems in experimental facilities. Control
systems operate on control points denoted as “devices”
in the ICCS. ICCS defines a class rooted at an abstract
type to represent devices. This base type declares
properties to be shared by all the control points
implemented in the FEPs: they possess references
allowing distributed access via CORBA, they are
initialized with data from a central data store, and they
can be reserved to assure exclusive operation by a
single client. Facility for monitoring and publishing
their status is in this level as well. However, this
facility is incomplete (in the templates level) since the
service is defined in terms of the abstract type.

The NIF Building Block level contains an inheritance
hierarchy that extends the abstraction of the device to
implement all the diverse kinds of procedures that real
physical devices – motors, power supplies, transient
digitizers, and the like – provide for their users. The
tactics of inheritance and aggregation are both used to
define objects in this level. These extensions reify the
interfaces that were needed to fulfill the domain
analysis. Therefore a motor device can report its present

position to the monitoring framework, and the
framework publishes that status.

A complete set of control system functions is built
on the levels above the Building Blocks so the services
remain available when the device class is extended.
Application Behavior, the uppermost of the three
layers, aggregates building blocks and extends the
services promised by the Templates layer. The concrete
packages that are defined here are extensible because
they use the polymorphic types in the building block
layer. And these packages, once extended, are the
components from which the ICCS Main Programs in
the highest-level subsystems are built.

5 PATTERNS
Use of existing object-oriented patterns is a proven

practice for constructing robust software systems [8].
Below is a brief discussion of some of the more
prevalent design patterns in the ICCS distributed
architecture.

Observer – The ICCS Framework makes extensive
use of the observer pattern (publish/subscribe) which is
well suited to a distributed environment because it
decouples publishers from knowledge of subscribing
clients. The Event, Alert, Status Monitor, and Shot
Life Cycle Frameworks all make use of this pattern. In
most all cases, the publishers and subscribers are in
separate processes and communicate via CORBA.

Factory – Object factories are used for the creation
and initialization of all application objects in the
ICCS. Each process has object factories that are
registered with the configuration server at process start-
up time and are remotely instructed to create objects
that define the content of an application program.
Configuration data for each process is stored in a
database and served to the object factories via CORBA.

Model-View-Controller – The model-view-
controller (MVC) architecture is a variation of the
observer pattern that serves to decouple the operator
interface (GUI layer) from the application software,
dividing the appearance of the interface from the control
object that defines system semantics. CORBA provides
interface technology that allows transparent
implementation of the MVC architecture across
language environments.

Strategy – The purpose of the NIF is execution of
laser experiments called “shots.” The ICCS utilizes the
strategy pattern to allow the “shot” logic for different
subsystems comprising the NIF to vary independently
of the “shot” state.

Additional Patterns – Many structural patterns
are used to facilitate various kinds of composition
(adapter, bridge composite, proxy). Inheritance and
support of polymorphic behaviors are the basis for the

ICCS Framework Templates. In addition, other
behavioral patterns such as command, mediator, state,
and template method are incorporated in various parts of
ICCS framework and application software.

Extending these patterns to a distributed environment
adds complexity and requires incorporation of
connection management. The ICCS Framework is built
on existing design patterns that have been extended for
distribution. Distribution presents additional failure
modes that must be addressed in the software designs.
The implementation of a design pattern must include
logic for failure and recovery when portions of the
pattern reside on different computers.

6 DISTRIBUTED COMPONENT
ARCHITECTURE

The NIF physical organization lends itself to a
distributed component-based communication
architecture. Control components consist of various
actuators, sensors, and instruments used to activate and
diagnose each NIF laser beam and its interaction with a
target. The ICCS maps NIF physical control
components to CORBA software objects. The interface
to each software component object is defined by the
allowable operations that are supported by the physical
representation.

This model is an elegant and easy to understand
representation of the physical NIF. However, with
distribution come challenges for building robust,
resilient systems. No software application can be
complete until error conditions are handled. A
distributed system running on top of the TCP/IP
transport layer has many more error possibilities than a
monolithic, nondistributed system.

The number of distributed interfaces correlates
directly to system complexity. A high number of
distributed interfaces allow possibly nondeterministic
messaging behavior. The potential for deadlock in such
an open communication environment is ever present.
Stringent testing can expose many deadlocks, but some
will likely arise in production operation. Debugging
distributed systems is difficult at best. In addition to
deadlock potential, highly distributed systems must deal
with connection management. Individual systems
might need to be restarted for any of several reasons.
How clients deal with lost connections has a direct
impact on system resistance to failure.

ICCS has developed standards for interface design
that specify various communication decoupling
mechanisms[6]. These decoupling mechanisms are
integral to the designs of the distributed software
framework and provide examples/patterns that
application interfaces can employ. The ICCS

Framework also contains connection abstractions that
manage the health of a CORBA reference.

7 PERSISTENCE LAYER
The ICCS architecture employs server programs that

act as persistence brokers [9] to provide database or file
services to thousands of distributed objects on hundreds
of computers. The brokers provide the run-time
interface between the control system and the persistence
mechanism while hiding the persistence mechanism
from the application software. CORBA allows
variation of the implementation language and
persistence mechanism independently of the application
software, as was the case with GUI technology. ICCS
currently has persistence brokers that interface to a
relational database (Oracle), to XML, and to HDF
(Hierarchical Data Format) files.

ICCS persistence classes map the data portions of
object designs to a specific persistence format. Addition
of new classes and their associated persistence is easily
accomplished. Base class templates are provided to
build the specific persistent subclasses. These base
classes are extended through inheritance by application
programmers to implement specific persistent
behaviors.

Each persistence broker can support one or more
persistent base classes. The broker programs are
constructed as semi-stateless processes. The state
information that the persistence brokers require is
maintained in the database. As the state information
changes, the database is updated. This allows us to
start/restart programs as necessary without having to
relearn the state of the control system.

8 PROCESS MANAGEMENT
Inter-process dependencies among a large population

of processes introduce substantial complexity. The
ICCS system manager framework maintains
rudimentary process state information from heartbeats.
Since it will be a typical occurrence for some
computers to be stopped and restarted for a variety of
reasons, reliable connection management requires that
clients be notified when the state of a service in another
process changes. The challenge is to provide client
notification of server state changes while maintaining
the location transparency in the application software.

Plans for enhancing the process management
mechanism in ICCS will enable observation of
resource loading and monitoring and control of process
states. Statistics on the state of network components,
CPU utilization, memory consumption, file system
capacity, and message traffic are important for
managing the health of ICCS.

Existing network management technology is being
leveraged to support ICCS process management.
HP-OpenView and Simple Network Management
Protocol (SNMP) were chosen as the process
management tools of choice, and investigation of
existing SNMP agents for the target platforms has been
started. Some customization of agents and MIBs
(Management Information Bases) will be required to
customize HP-OpenView and SNMP to the ICCS
environment. Research into the capability to have
SNMP agents monitor the object request broker is
beginning. There is significant work remaining in this
area of the ICCS architecture.

9 SUMMARY
In the context of a distributed system design, choices

for the ICCS component-based communication
architecture map to the physical organization of the
NIF. A layered architecture has been employed to
manage dependencies between different levels of
abstraction. The ICCS supervisory software framework
delivers prebuilt components that are extended to
accommodate specific additional requirements in the
construction of the application software. Twelve
different framework abstractions are described that
provide the basis for constructing the NIF Control
System. Object-oriented design patterns are extended to
support reliable distribution. The ICCS persistence
layer has been successful encapsulating a variety of
persistence mechanisms.

Construction of the application software is
progressing in a planned, iterative fashion using the
software framework foundation layers. Process
management features are being designed and added to the
framework in preparation for scaling to the full ICCS
process population. Distribution complexity and
connection management continue to be the challenge to
the software architecture as the number of control
points and FEPs are scaled to the full NIF.

This work performed under the auspices of the U.S.
DOE by LLNL under contract No. W-7405-Eng-48.

REFERENCES
[1] Fred W. Holloway, “Evaluation of CORBA for

Use in Distributed Control Systems,” FY98
LDRD Project, UCRL-ID-133254, February 1999.

[2] John P. Woodruff, Paul J. VanArsdall, “A Large
Distributed Control System Using Ada in Fusion
Research,” ACM SIGAda Annual International
Conference, UCRL-JC-130569 Rev1, November
1998.

[3] Rocky Stewart, Dave Rai, Sanjayu Dalal,
“Building Large-Scale CORBA-Based Systems,”
Component Strategies magazine, pg 34, January
1999.

[4] R. M Bryant et al., “NIF Control Network
Design and Analysis,” ICALEPCS 2001.

[5] L. J. Lagin et al., “The Overview of the National
Ignition Facility Distributed Computer Control
System,“ ICALEPCS 2001.

[6] Kirby W. Fong et al., “Application Software
Structures Enable NIF Operations,” ICALEPCS
2001.

[7] John P. Woodruff et al., “Quality Control, Testing
and Deployment Results in NIF ICCS,”
ICALEPCS 2001.

[8] Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, “Design Patterns – Elements of
Reusable Object-Oriented Software,” Addison-
Wesley, 1995.

[9] T.J. Mowbray, R. C. Malveau, “CORBA Design
Patterns,” John Wiley & Sons Publishing, 1997.

